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Abstract

versus only 10.7% RCB = O if signature were negative.

Background: Pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in triple-negative
breast cancer (TNBC) varies between 30 and 40% approximately. To provide further insight into the prediction of
pCR, we evaluated the role of an epigenetic methylation-based signature.

Methods: Epigenetic assessment of DNA extracted from biopsy archived samples previous to NAC from TNBC patients
was performed. Patients included were categorized according to previous response to NAC in responder (pCR or residual
cancer burden, RCB = 0) or non-responder (non-pCR or RCB > 0) patients. A methyloma study was performed in a
discovery cohort by the Infinium HumanMethylation450 BeadChip (450K array) from lllumina. The epigenetic silencing of
those methylated genes in the discovery cohort were validated by bisulfite pyrosequencing (PyroMark Q96 System
version 2.0.6, Qiagen) and gRT-PCR in an independent cohort of TN patients and in TN cell lines.

Results: Twenty-four and 30 patients were included in the discovery and validation cohorts, respectively. In the discovery
cohort, nine genes were differentially methylated: six presented higher methylation in non-responder patients
(LOC641519, LEF1, HOXAS, EVC2, TLX3, CDKL2) and three greater methylation in responder patients (FERD3L, CHLT, and
TRIP10). After validation, a two-gene (FER3L and TRIP10) epigenetic score predicted RCB =0 with an area under the ROC
curve (AUC) =0.905 (95% Cl =0.805-1.000). Patients with a positive epigenetic two-gene score showed 78.6% RCB =0

Conclusions: These results suggest that pCR in TNBC could be accurately predicted with an epigenetic signature of
FERD3L and TRIP10 genes. Further prospective validation of these findings is warranted.

Keywords: Triple-negative breast cancer, Prediction, Epigenetic signature

Background

At the present time, chemotherapy (CT) is the only proven
therapy for triple-negative breast cancer (TNBC) subtype.
Anthracycline and taxane-based CT is still the standard of
care for TNBC [1], with pathological complete response
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(pCR) rates ranging ~ 30—40% [2—6]. pCR rate in TNBC
are associated with better outcomes while residual disease
after neoadjuvant chemotherapy (NAC) have a higher re-
lapse risk and poor prognosis [7]. With the advantage of
high sequencing technology, several molecular signatures
have been developed in the recent years to predict response
to neoadjuvant chemotherapy (NAC). Oncotype-Dx [8],
MammaPrint [9], Blue Print [10], Endopredict [11], or Pro-
signa [12] are some of them. Recently, an initial 199-gene
signature, (E2F4 target gene signature), has shown accurate
prediction of response to NAC even when reduced to
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33-gene panel and has been validated in 1129 pa-
tients across five independent data sets [13]. However, all
these predictive panels have shown to do better in ER posi-
tive breast cancer than in ER negative. Thus, accurate pre-
diction of response in TNBC still remains a medical need.
Other study addressed the issue of the prediction to NAC
in 94 patients TNBC treated with paclitaxel and carboplatin
according to the Lehman’s TNBC type 4 classification.
Basal-like 1 (BL1) subtype showed a pCR rate of 65.2%,
while basal-like 2 (BL2) was 47.4%, mesenchymal (M)
36.4%, and luminal androgen receptor (LAR) 21.4% [14].
The I-SPY 2 is an ongoing prospective trial of NAC in
breast cancer including a cohort of TNBC patients. A
70-gene panel combined with DNA deficient biomarkers
have shown a 75% pCR in a subset of TNBC patients
treated with carboplatin and veliparib in a recent publica-
tion of this cohort [15]. All these panels have been designed
based on arrays of gene-expression techniques. Neverthe-
less, epigenetic modifications of certain genes can lead to
silence or activation of different genes [16, 17].

The epigenetic modifications of the DNA, such as
methylation, can modulate gene expression with no DNA
sequence modification and contribute to disease develop-
ment [18]. In this context, epigenetic changes in tumor
DNA before CT administration could potentially have a
predictive role of response to this therapy [18]. The aim of
this study was to identify a predictive epigenetic signature
of pCR as defined by the residual cancer burden (RCB)
index by Symmans et al. [19](RCB =0) in patients with
TNBC treated with NAC including anthracyclines and/or
taxanes-based regimens.

Results

Clinical characteristics of TNBC patients

Fifty-four patients were included: 24 in the discovery cohort
(DC) and 30 in the validation cohort (VC). The clinical
characteristics of the patients are summarized in Table 1.
After biopsy, all patients were treated with NAC based on a
taxane and/or anthracycline regimen and all of them were
considered TNBC according to immunohistochemistry for
ER, PR, and HER2. Patients were classified in responders
(R) if RCB = 0 or non-responders (NR) if RCB > 0.

Analysis of DNA methylome in responder and non-
responder patients: discovery cohort

A genome-wide DNA methylation study was performed
in the DC (N =24, 10 R (RCB =0) and 14 NR (RCB > 0)).
Figure 1a summarizes the whole process during this study.
The analysis of methylation data showed 133 CpGs sites
(71 genes) with differences in methylation levels >20% (p
value < 0.05) that distinguished R patients (treatment sen-
sitive) from NR patients (treatment resistant) (Fig. 1b). Ac-
cording to a Gene Ontology (GO) analysis, some of these
genes were involved in biological functions and pathways
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Table 1 Clinical characteristics of TNBC patients included in the

study
Variable Whole Discovery cohort Validation cohort
cohort N=24 N=30
N=54
Age; median (range) 47.88 (27.19- 46.88 (30.33— 4849 (27.19—
78.92) 78.07) 78.92)
cT
cTx 5(9.3%) 2 (83%) 3 (10.0%)
cr-2 40 (74.1%) 16 (66.6%) 24 (80.0%)
T34 9 (16.6%) 6 (25.1%) 3 (10.0%)
cN
cNx 4 (7.4%) 2 (8.3%) 2 (6.7%)
cNO 32 (59.3%) 14 (584%) 18 (60.0%)
cN+ 18 (33.3%) 8 (33.3%) 10 (33.3%)
Ki67 in biopsy
Missing value 10 (18.5%) 7 (29.2%) 3 (10.0%)
ki67 < =50% 17 (31.6%) 7 (29.2%) 10 (33.3%)
ki67 > 50% 26 (49.9%) 10 (41.6%) 17 (56.7%)
Type of NAC
Taxanes 14 (25.9%) 5 (20.8%) 9 (30.0%)
Anthracyclines 1 (1.9%) 0 (0%) 1 (3.3%)
Taxanes and 39 (72.2%) 19 (79.2%) 20 (66.7%)
anthracyclines
RCB
RCB=0 19 (35.2%) 10 (41.7%) 9 (30.0%)
RCB>0 35 (64.8%) 14 (58.3%) 21 (70.0%)
RCB:
RCB=0 19 (35.2%) 10 (41.7%) 9 (30.0%)
RCB=1 8 (14.8%) 3 (12.5%) 5 (16.7%)
RCB=2 19 (35.3%) 6 (25.0%) 13 (43.3%)
RCB=3 8 (14.8%) 5 (20.8%) 3 (10.0%)

(NAC neoadjuvant treatment)

such as DNA repair, cell adhesion, transcription regula-
tion, or signaling mediated by GTPases (Fig. 1c, Add-
itional file 1: Table S1) that have shown to be implicated
in chemoresistance of cancer, including the response to
anthracyclines and/or taxanes [20-23].

Thirty-five CpGs located in promoters, islands, or
shores from 23 genes were selected to further validations
(Additional file 2: Table S2). Of these, taking into ac-
count an intra-group SD <0.2, 11 CpGs corresponding
to 11 genes showed significant methylation differences
(Additional file 3: Table S3), and 9 of these genes
showed a consistent methylation profile on consecutive
CpGs (Fig. 2). These candidate genes were LOC641519,
LEF1, HOXAS, EVC2, TLX3, and CDKL2 with high
methylation in NR group and genes FERD3L, CHLI, and
TRIP10 with high methylation in R group.
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Validation of methylation in candidate genes by
pyrosequencing: validation cohort

A pyrosequencing study in the DC and in the VC (N =
30, 9 RCB =0 and 21 RCB > 0) was performed to validate
the candidate genes first technically and secondly in an
independent cohort, respectively. Methylation was ana-
lyzed for each gene taking into account the differentially
methylated CpGs identified in the 450K array and other
CpGs located close to them in order to obtain a more
consistent result (Additional file 4: Table S4).

In the DC, we replicated by pyrosequencing the methy-
lation data obtained in 450K array for LOC641519/LEF1
gene (p value = 0.02) and HOXAS5 gene (p value = 0.0001),
where we also observed a methylation level significantly
higher in NR patients than R patients, and in FERD3L
gene (p value = 0.04), TRIP10 (p value = 0.003), and CHL1
(p value = 0.03), where methylation was also significantly
higher in R patients than NR patients. However, in EVC2
gene (p value =0.07), CDKL2 gene (p value =0.05), and
TLX3 gene (p value = 0.07), replication was not statistically
significant but showed a trend towards a higher level of
methylation in NR patients (Fig. 3a).

Pyrosequencing in the VC validated the results for
FERD3L gene (p value = 0.0087) with high methylation in
R group versus NR group (Fig. 3b). Moreover, differences
in TRIP1I0 methylation showed a trend towards

significance between R and NR (p value = 0.19). Accord-
ingly, by means of a biological pathway analysis of these
genes using the publicly available resource Pathway Com-
mons [24], we observed that FERD3L and TRIPI10 are able
to interact with several genes (Additional file 5: Figure S1)
which have been previously associated with therapy resist-
ance of breast cancer and other types of tumors [23, 25].

FERD3L methylation and gene expression in TNBC cell
lines

In order to evaluate whether DNA methylation has a func-
tional role in the transcriptional control of FERD3L, we eval-
uvated FERD3L gene expression by qRT-PCR and
methylation by pyrosequencing in a set of TNBC cell lines
(Fig. 4a) with the aim of correlating FERD3L methylation
levels with gene expression level and corroborate the results
from patients. We observed that FERD3L gene was methyl-
ated in all the cell lines studied with levels always higher than
40%. The FERD3L expression inversely correlated with the
methylation detected as was expected, showing a low gene
expression when methylation was high. Thereby, MDA-
MB-231 cell line showed the lowest methylation level and
correlated with the highest level of gene expression. Con-
versely, HCC-1143 cell line that showed the higher methyla-
tion was the one with the lowest gene expression level.
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FERD3L demethylation assays and gene expression in
TNBC cell lines

In order to check if changes in FERD3L methylation sta-
tus also affect to gene expression level, we performed an
assay with the MDA-MB-436 cell line treated with AZA
demethylating agent. We observed that the treatment
modified FERD3L methylation in MDA-MB-436 cell line
inducing a decrease when compared with control cells
(MDA-MB-436 cell line not treated with AZA) (p value
=0.05). As we expected, this change in FERD3L methy-
lation was correlated with a significant increase (p value
=0.0022) in FERD3L expression (Fig. 4b).

High FERD3L expression levels correlates with low gene
methylation in TNBC patients

The analysis of FERD3L gene expression in the 54 patients
showed a significant difference (p value = 0.04) in FERD3L
gene expression with high expression in NR patients versus
R patients (Fig. 4c). Therefore, it suggests an inverse correl-
ation between methylation and gene expression in NR pa-
tients and R patients. The Cancer Genome Atlas dataset
(TCGA) analysis for 713 breast cancer patients showed
negative correlation between methylation and expression,
according with our data. It was detected both when all
CpGs in the FERD3L gene promoter were included and
when only analyzed the CpG c¢gl10043037 validated for
FERD3L gene in the study (Fig. 4d).

Statistical model to predict response to neoadjuvant
treatment in TNBC patients
Due to FERD3L and TRIPI0 showed the higher level of
significance in the VC, we selected both genes for ther-
apy response analysis. It is interesting to note that these
two genes did not show statistical differences in methy-
lation between R and NR in terms of age, tumor size,
nodule affectation, or ki67 expression (Additional file 6:
Table S5) indicating that these genes were not associated
with any relevant clinicopathological prognostic factor.
Importantly, we were able to create a statistical epige-
nomic predictive model of pathological response (RCB =
0) with the FERD3L and TRIP10 methylation and using
the whole cohort. These two genes were selected as both
showed the higher level of significance in the VC. The
statistical model for the prediction of therapy response
was based on the Akaike information criterion (AIC)
and by constructing a receiver operating characteristic
(ROC) curve. Based on this model, the following rule
was constructed:

A x FERD3L methylation level (%) + B x TRIP10
methylation level (%) > 971 (A and B being constants)

Levels >971 showed a high likelihood for RCB=0 (8
out of 11 cases 78.6%), while levels < 971 showed a poor
probability for RCB=0 (3 out of 28 patients 10.7%).
Value based of the calculation of the ROC curve with
AUC =0.9056 (95% CI = 0.805-1.000) (Fig. 5a, b).
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were replicated in LEF1/ LOC641519 and HOXA5 genes, with a significant higher methylation in non-responders patients vs. responder patients (p
<0.05) and FERD3L, TRIP, and CHL1 genes, with a significantly higher methylation in responder patients vs. non-responder patients (p < 0.05). The
CDKL2, EVC2, and TLX3 genes showed a trend for significance (p = 0.05). b Validation results in the validation cohort (VC, n = 30). Methylation data
from the 450K array were only replicated for FERD3L gene. Values were statistically different when compared non-responder vs. responder group
showing low methylation in non-responder patients (p = 0.0087). The TRIP10 gene showed a non-significant trend towards a high methylation in

Discussion

This study evaluated the methylation profile of triple-
negative breast cancer (TNBC) patients treated with neo-
adjuvant systemic chemotherapy (NAC) depending on the
treatment response and identified a two-gene epigenetic
signature for discriminating responders (R) from non-re-
sponders (NR). The discovery cohort included 24 TNBC
patients and was analyzed by using Infinium Human
Methylation 450 BeadChip array whereas the validation
cohort included 30 TNBC patients and was analyzed by
pyrosequencing for the significant and most relevant
genes identified in the discovery cohort. For each case,
DNA was obtained from core biopsies before the begin-
ning of the treatment. The analysis of the discovery cohort
identified nine genes differentially methylated. Six genes
with higher methylation in NR patients (LOC641519, LEF1,
HOXAS5, EVC2, TLX3, CDKL2) and three genes with
greater methylation in R patients (FERD3L, CHLI and
TRIP10). After technical and analytical validation by pyro-
sequencing in both discovery and validation cohorts, we
identified a two-gene (FERD3L and TRIP10) signature able
to predict response to NAC. The role of promoter

methylation in the regulation of FERDL3 gene expression
was evaluated in TNBC cell lines and in TNBC tissues,
demonstrating an inverse correlation between methylation
and expression levels. To our knowledge, the two genes
epigenetic model shown in this study is the first epigen-
etic signature for prediction of response to NAC in
TNBC patients. It should be noted that this model al-
most doubles the predictive potential described for the
TNBC subtype by other approaches (~30-40% versus
78.6% with our model) [2-6].

Pathological complete response (pCR) is an effective sur-
rogate marker for survival among patients with luminal B/
HER2 negative, HER2 positive, and TNBC tumors. The re-
sults of a meta-analysis of 6377 patients with operable or ad-
vanced non-metastatic disease from six prospective
neoadjuvant studies support this [26]. In the TNBC group
of 911 patients who received anthracycline and taxane based
NAC, 31% achieve pCR. Most recently, a retrospective ana-
lysis of 452 TNBC patients showed a pCR of 33% [3]. Over-
all and disease-free survival were significantly longer among
patients achieving pCR versus residual disease [3]. In this
context, the development of a more accurate predictive
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signature in TNBC could have an important clinical impact.  of diseases such as breast cancer. Few methylation studies
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are based in genomic signatures [8-10, 13, 27]. al. identified differentially methylated regions that could sep-

Epigenetics changes affect cellular processes such as gene  arate TNBC and non-TNBC patients and classified those ac-
expression and have clearly been related to the development  cording to prognosis. This provided the first evidence that
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changes in the methylation profile of DNA could be useful
to identify and stratify TNBC patients [28]. Recently, Mathe
et al. performed a study of gene expression and DNA
methylation in the same population, demonstrating that
DNA methylation contributes to the deregulation of gene
expression [29]. In this context, our results suggest that
response to NAC can be predicted accurately with an algo-
rithm of the methylation status of FERD3L and TRIPI10
genes in patients with TNBC.

The FERD3L (Fer3-like bHLH transcription factor)
gene, also named NATO3 or N-TWIST, is a gene located
on chromosome 7 and is a basic helix-loop-helix (PHLH)
transcription factor. These factors play an essential role in
multiple developmental processes, mainly in neurogenesis,
where its regulation is essential for the right development
[30]. FERD3L is a member of the TWIST genes family that
is implicated in epithelial-mesenchymal transition (EMT)
in cancer cells, a process also related to metastasis and
may lead to chemo-resistance in TNBC [31].

The TWIST genes induce cell dedifferentiation and
cell migration [32] and are also related to the inhibition
of apoptosis [33], the cancer stem cell phenotype [34],
and chemotherapy resistance [35].

Several studies have shown that in metastatic carcinomas
including aggressive and metastatic breast cancer, there are
an overexpression of TWIST [36]. The inactivation of
TWIST by siRNA technology or chemotherapeutic ap-
proaches has proved successful [36—38], so it is presented
as a potential therapeutic target for metastatic breast
cancer. There is only one work in the literature that relates
the FERD3L gene to cancer, specifically neuroblastoma
[39]. Promoter CpG islands in FERD3L gene was found to
be highly methylated in neuroblastoma cell lines causing
gene silencing and poor prognosis. However, to our know-
ledge, there is no previous evidence of relation between
FERD3L expression and response to CT in the clinical
setting or any relation with breast cancer.

The TRIPIO (thyroid hormone receptor interactor 10
gene) is located in chromosome 19 and belongs to the
minor histocompatibility antigens family and codifies the
Cdc42-interacting protein 4 (CIP4). This protein interacts
with the GTPase Cdc42 that is related with actin formation
and has been implicated in cytoskeleton organization [40].
Paclitaxel, a type of taxane, promotes microtubule
stabilization and polymerization leading to a cell cycle ar-
rest and apoptosis [41]. Actin-microtubule crosstalk is par-
ticularly important for cell shape and polarity during cell
migration and division [42]. In this context, TRIP10 hyper-
methylation could increase the efficacy of paclitaxel effects
on cytoskeleton. Furthermore, TRIP10 has an important
role in the cellular motility and cohesion control since it is
implicated in E-cadherin regulation [43]. In fact, previous
studies have related TRIP10 with cell invasion in TNBC
cells in vitro [44]. Interestingly, another study demonstrated
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also that TRIP10 gene controls EMT [43]. They described a
pro-metastatic role of TRIPI0, in concordance with the in
vitro and in vivo data from Cerqueira et al. [45]. In
addition, TRIP10 expression has shown to be regulated by
DNA methylation in mesenchymal stem cell differentiation
[46] and in several types of cancer cell lines and tumors
[47]. In particular, in breast cancer, it has been also con-
firmed that TRIP10 expression can be regulated by epigen-
etic mechanisms such as DNA methylation [47, 48].

Basing a signature on the methylation status of only two
genes could be a limitation of this study. However, the
identification of this signature was provided by a very
stringent analysis to select the most suitable candidate
genes and they were further validated in an independent
cohort of patients. In fact, there are several examples of
other two-gene signatures, including methylation based
signatures, that have previously shown clinical utility for
cancer in different types of tumors [49-56]. Additionally,
the sample size could be considered small; however, it is
important to highlight that the group of patients is very
homogeneous in order to eliminate potential confusion
factors. In our analysis, we compared methylation levels
among TNBC patients who responded and did not
respond to neoadjuvant chemotherapy. Both groups were
homogeneous also regarding to staging and severity, bas-
ing the difference only in the response to chemotherapy.
In fact, no statistically significant differences were
observed in methylation levels according to staging and
severity. Therefore, the strict selection of patients could
be a strength that give support and power to these results.
The low number of cases analyzed could limit the imme-
diate translational relevance but represents a very good
start point for future studies in the field.

Conclusions

Triple-negative breast cancer has a high relapse rate after
conventional chemotherapy treatment. To date, no predic-
tors of treatment effectiveness have been identified. In this
study, we propose an epigenetic signature based on the
methylation levels of the FERD3L and TRIP10 genes. Our
algorithm has a complete pathological response prediction
potential of 78.6% and increases the predictive potential
described by other approaches. This is especially relevant
if we consider that it could be a predictive tool in clinical
practice that will allow selecting the appropriate treatment
as well as better stratification of patients for clinical trials.

Methods

Patients treatment and tumor samples

Patients treated with anthracyclines and/or taxanes NAC
in the Hospital Clinico of Valencia and diagnosed with an
early TNBC between 2005 and 2015 (Table 1) were retro-
spectively selected for the study according to clinical inclu-
sion/exclusion criteria (Additional file 7: Table S6). Tumor
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samples were obtained before exposure to any systemic
anticancer treatment using ultrasound-guided core needle
biopsy. The cores were placed on OCT and stored at — 80°
C, or included in FFPE. Tumor percentage, histology and
ER, PR, HER2, and Ki67 expression were determined. ER
and PR status were considered negative when nuclear
staining is < 10%. For the assessment of HER2, ASCO/
CAP recommendations were used [57]. Diagnosis of
TNBC was done according to IHC results. The patho-
logical response after NAC was evaluated by the Symmans
method (residual cancer burden; RCB) [19]. A value of
RCB =0 implies pCR, whereas values of RCB > 0 indicates
that there is still residual tumor. From an initial analysis of
the database, 70 patients were identified. Only those that
had a tumor percentage >25% and reached 500 ng after
DNA extraction were used. Fifty-four patients were in-
cluded in the study; of these, a group of 24 patients (10
RCB =0 and 14 RCB > 0) were selected for the discovery
cohort (DC) and 30 patients (9 RCB =0 and 21 RCB > 0)
were included in the validation cohort (VC).

Sample size calculation

Sample size calculation was based on data from a recent
series reporting that TNBC patients treated with NAC
obtaining a RCB = 0 was around 30% [4]. If our methylation
data would be able to predict two groups of responders (R)
versus non-responders (NR) and we estimate that the pro-
portion of patients with RCB =0 could be 45% in R while
the proportion of RCB =0 in the NR group would be 10%,
with an alpha error of 5% and a power of 80%, the sample
size needed to identify this difference between both propor-
tions is 44 patients (22 patients/group). According to this,
the theoretical sample size, including a 15% drop-out,
should be 51 patients, (https://select-statistics.co.uk/calcu-
lators/sample-size-calculator-two-proportions/).

TNBC cellular lines and treatments

Five TNBC cell lines from American Type Culture Collec-
tion (ATCC) were cultured (HCC-1937, HCC-1143, HCC-
38, MDA-MB-231, and MDA-MB-436) following standard
culture conditions. Treatment with the demethylating agent
5-aza-2'-deoxycytidine (AZA) (Sigma, St. Louis, MO, USA)
was performed at 5 uM during 72 h. In this assay, results
were performed in triplicates and data were compared with
the corresponding non-treated cell line.

DNA extraction and bisulfite conversion

Both OCT or FFPE TNBC tissue were used depending on
availability and DNA extraction was performed using DNA
purification protocol with NaCl or the kit “DNA PPPE
QIAamp Tissue” (Qiagen) respectively. DNA from cells
lines was extracted using Trizol reagent. DNA samples
were quantified using PicoGreen method (Invitrogen) and
quality was evaluated using Nanodrop (Thermo Scientific)
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and electrophoresis gels. For DNA bisulfite modification,
500 ng of DNA were used and modification was performed
with EZ-96 DNA Methylation (Zymo Research Corp.)

DNA methylation analysis by Infinium Human
Methylation 450 BeadChip array
Microarray-based DNA methylation analysis was con-
ducted with the Infinium Human Methylation 450 Bead-
Chip (450K array; Illumina, San Diego, CA), that covers
> 450,000 CpG sites along the human genome [58]. After
bisulfite conversion, hybridization was performed follow-
ing the Illumina Infinium HD methylation protocol.
Methylation score of each CpG was represented as f3
value that ranged between O (unmethylated) and 1
(completely methylated). Color balance adjustment and
normalization were performed using GenomeStudio
HMumina software (V2010.3). After filtering, differentially
methylated CpG sites (DMCpGs) between R and NR
groups were identified following this flowchart (Fig. 1a): for
each probe/CpG, the sets of methylation S values belong-
ing to both groups were compared to obtain (1) DMCpGs
with a significant p value < 0.05 (1030 CpGs); (2) DMCpGs
with average S values between R and NR groups > 0.20
(133 out of 1030 CpGs); (3) DMCpGs localized in island or
shore regions of promotors (35 out of 133 CpGs); (4)
DMCpGs with intragroup standard deviation (SD) <0.20
in order to select the most relevant positions for validation
(11 out of 35 CpGs); (5) DMCpGs with a consistent
methylation profile in consecutive CpGs (10 out of 11).
This final filter with ten CpGs (9 genes) yielded the best
candidates for validation.

DNA methylation analysis by bisulfite pyrosequencing
Quantitative DNA methylation analysis was performed by
bisulfite pyrosequencing of consecutive cytosines located
in islands or shores of promoter regions of candidate
genes using a Pyro Gold SQA™ Reagent Kit (Qiagen) in a
PyroMark Q96 System version 2.0.6 (Qiagen) according to
the manufacturer’s instructions. CpG site methylation
quantification was obtained using Pyro Q-CpG 1.0.9
(Qiagen). Primer sequences (Additional file 8: Table S7)
were designed with PyroMark Assay Design 2.0 (Qiagen).

Gene expression studies and correlation with methylation
levels

Total RNA was isolated from OCT/ FFPE samples by
mirVana Isolation Kit (Ambion) and from cell lines
using Trizol (Invitrogen) according to the manufacturer’s
protocol. The RNA (500 ng) were retrotranscribed using
the High-Capacity cDNA Reverse Transcription kit (Ap-
plied biosystems) according to the manufacturer. Quan-
titative RT-PCR (qRT-PCR) reactions were performed in
triplicate on an Applied Biosystems 7900HT Fast Real-
Time PCR system using TagMan expression assays (FE
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RD3L Hs00541737_s1; TRIP10 Hs00182848_ml; GAP
DH Hs03929097_g1 (Applied Biosystems). Gene expres-
sion was assayed with GAPDH as endogenous control
and using the delta delta Ct method.

Gene ontology and The Cancer Genome Atlas (TCGA)
database analysis

A gene ontology (GO) analysis was performed to
estimate the enrichment of the DMCpGs identified in
particular biological processes [59]. This analysis
detects the significant over-representation of GO
terms in one of the sets with respect to the other for
the entire genome. GO terms with p value <0.05
were considered significant. DNA methylation and
expression data from patients with invasive breast
carcinoma were obtained from The Cancer Genome
Atlas (TCGA) using the MethHc database (http://
methhc.mbc.nctu.edu.tw/php/index.php). Paired DNA
methylation and expression data from 713 patients
obtained from Infinium 450K array and RNA-Seq,
respectively, were used. Based in the methylation
results of our study, we considered the methylation
data of FERD3L promoter region and the methylation
of an individual CpG (cgl10043037) located at the pro-
moter region.

Statistical analysis

In the DC, data were summarized by mean, SD, or
median. To identify consistent patterns of differen-
tially methylated CpG sites between responders (R)
versus non-responders (NR), a non-parametric
Wilcoxon rank sum test was performed in the DC.
This test demonstrates quite robust results even for a
small number of subjects. Globally, a two-tailed p
value of less than 0.05 was considered to indicate
statistical significance. All statistical analyses were
performed using GraphPad Prism 7 and R software
(version 3.2.0).

In the VC, differences in DNA methylation and
transcript levels of the identified genes between R
and NR and gene expression changes in the cell lines
after the demethylating treatment were assessed by
the non-parametric Mann-Whitney U test. The cor-
relation between methylation and transcript levels was
assessed by Spearman’s rank correlation coefficient.

Receiver operating characteristic (ROC) curves were
used to assess the diagnostic predictive capacity of the
candidate biomarkers. The area under the curve (AUC)
was computed for each ROC curve, and 95% confidence
intervals (CI) were also estimated by bootstrapping with
1000 iterations. Sensitivity and specificity were estimated
at the optimal cut-off point according to Youden
criteria.
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Data were summarized by mean, SD, or median.
Globally, a two-tailed p value of less than 0.05 was
considered to indicate statistical significance. All
statistical analyses were performed using GraphPad
Prism 7 and R software (version 3.2.0).

Additional files

Additional file 1: List of all the biological processes enriched for the 71
differentially methylated genes between responder and non-responder
patients according to the Gene Ontology analysis (DOCX 32 kb)

Additional file 2: Thirty-five differentially methylated CpGs between
responders and non-responders group selected from 450k array (delta
value 2 0.2) corresponding to 23 genes located in promoter and island/
shore (PPT 172 kb)

Additional file 3: Eleven differentially methylated CpGs, corresponding
to 11 genes, showed significant methylation differences between non-
responder and responder patients: 6 genes (LOC641518; LEF1; HOXAS;
EVC2; CDKL2; TLX3) presented a methylation increase in non-responders
group vs responders, and 5 genes (ZFHX4; LOC100192378; FERD3L; CHL1;
TRIP10) decreased methylation level in non-responder patients compared
to those who responded to NAC treatment (PPT 225 kb)

Additional file 4: CpGs studied by pyrosequencing in the DC and in
the VC to validate methylation in the candidate genes identified in the
450k array (lllumina). In bold, CpGs from 450k array. Normal type,
consecutive CpGs (PPT 140 kb)

Additional file 5: Representation of the pathway interaction network of
FERD3L and TRIP10 with other genes using Pathway Commons. FERD3L
and TRIP10 are able to interact with different genes that have shown to
be implicated in cancer drug resistance (PPT 452 kb)

Additional file 6: Mean differences in methylation levels according to
clinicopathological prognostic factors in both cohorts (DC+VCQ). cT, clinical
tumor size; cN, clinical nodule affectation (PPTX 48 kb)

Additional file 7: Clinical inclusion and exclusion criteria followed to
select TNBC patients for the methylation study (PPT 89 kb)
Additional file 8: Sequence of primers used by pyrosequencing in the

validation assay of candidate genes obtained from 450k array (PPT
143 kb)
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